Sie sind hier: HomeRubrikenMesstechnik / Sensorik

News, Produkte, Fachartikel zu Embedded-Systemen: Echtzeitbetriebssysteme, Computer-Boards/Systeme, Erweiterungskarten, Entwicklungstools

Mikrosensoren auf Basis von Graphen: Lauschangriff auf Nervenzellen

Unablässig laufen elektrische Impulse über die Bahnen des menschlichen Nervensystems. Wissenschaftler des Forschungszentrums Jülich, der TU München und vom niederländischen Leiden Institute of Chemistry haben Mikrosensoren entwickelt, die diese Signale der Nervenzellen belauschen können.

Vom Rand der Kunststofffolie aus laufen Leiterbahnen zu den winzigen Graphenelektroden in der Mitte. Bildquelle: © Forschungszentrum Jülich/D. Kireev

Vom Rand der Kunststofffolie aus laufen Leiterbahnen zu den winzigen Graphenelektroden in der Mitte.

Für die winzigen Messfühler nutzen die Experten Graphen, eine Modifikation des Kohlenstoffs mit zweidimensionaler Struktur. Die einzelnen Atome bilden darin ein sechseckiges Wabenmuster. Als aktive Schicht in den Sensoren vereint es gleich drei vorteilhafte Eigenschaften: Es reagiert äußerst empfindlich auf die schwachen Zellimpulse, ist biologisch verträglich und kann auf einer biegsamen Unterlage aufgebracht werden.

»Das ist entscheidend für die Anwendungen, die wir uns für diese Bauteile vorstellen können«, erklärt  Kireev vom Institute of Complex Systems (ICS-8). Auf lange Sicht gehe es darum, eine Gehirn-Computer-Schnittstelle zu entwickeln. Solche Implantate greifen Signale direkt im zentralen Nervensystem auf und leiten sie nach draußen. Profitieren könnten davon Patienten mit einer Prothese, die dadurch eine direkte Kontrolle über ihr künstliches Körperteil erhielten. »Doch bevor es soweit«, können die Sensoren dabei helfen, grundlegende Erkenntnisse über die Funktion von Nervenzellen zu gewinnen, so Kireev weiter.

Mit bloßem Auge nicht zu erkennen

Die Träger, auf denen der Nanoforscher die feinen Graphenfühler in einem Gittermuster anordnen, sind nicht viel größer als eine Briefmarke. Da das Material extrem reißfest und gleichzeitig biegsam ist, können die Jülicher Forscher die Sensoren auf eine flexible Kunststofffolie anbringen. So lassen sich die Bauteile rollen und biegen, ohne dass sie an Funktionalitäten einbüßen. Das ist eine wichtige Voraussetzung dafür, dass sie im Körper eines Patienten implantiert werden können.

Die Sensoren sind mit bloßem Auge nicht zu erkennen. Gut sechzig Stück von ihnen sind auf den Bauteilen auf einer Fläche angeordnet, die gerade mal so groß ist wie ein Stecknadelkopf ist. Den Rest des Bauteils nehmen die Zuleitungen ein. Zwei verschiedene Architekturen für die Mikrosensoren hat Kireev bereits verwirklicht: »Im einfachsten Fall bildet die dünne Graphenschicht bloß eine Mikroelektrode, welche die Impulse der Nervenzellen aufnehmen und weiterleiten kann. Dieser Aufbau besitzt ein geringes Grundrauschen und liefert daher sehr saubere Signale.«

Etwas komplexer stellt sich der zweite Aufbau dar, in dem die Graphenschicht einen Teil eines Feldeffekttransistors (FET) auf dem Bauteil bildet. Dieses Schaltelement funktioniert wie ein winziges Ventil für elektrischen Strom: Eine Steuerspannung bestimmt, wie weit das Ventil geöffnet ist und wie viele Ladungen somit in einer bestimmten Zeit hindurchfließen können. Wenn eine Nervenzelle auf solch einem Graphen-FET ein Signal abfeuert, beeinflusst dieser Impuls die Steuerspannung und damit auch den Stromfluss.

Intelligente Herzschrittmacher denkbar

Das Grundrauschen der Transistoren ist allerdings höher als bei einfachen Mikroelektroden. Das liegt an der guten Leitfähigkeit des Graphens erläutert Kireev: »Die Stromfluss in einem Graphentransistor lässt sich nicht komplett abstellen. Das Ventil ist immer ein klein wenig geöffnet«. Deshalb sei es hier schwieriger, das Messsignal vom Rauschen des Sensors zu trennen.

Das wiegt der Graphen-Transistor jedoch durch eine andere Eigenschaft wieder auf, betont der Jülicher Forscher. Denn mit den winzigen Bauteilen lassen sich logische Schaltungen aufbauen. Die zeichnen dann nicht nur die Signale auf, sondern können auf demselben Bauteil gleichzeitig die gemessenen Werte weiter verarbeiten und analysieren. Damit ließen sich dann nicht nur die Nervenimpulse auslesen. Man könnte auch gezielt Zellen stimulieren. Denn nicht nur einzelne Neuronen verarbeiten bioelektrische Signale, sondern auch Herzzellen. » Es ist also durchaus denkbar, mit dieser Technik einen intelligenten Herzschrittmacher zu verwirklichen«, sagt Kireev.

Doch so weit ist die Jülicher Entwicklung noch lange nicht. Im Labor hätten die Sensoren auf Basis von Graphen bereits bewiesen, was sie können. Die nächste Herausforderung besteht nun darin, die Zellsignale auch an einem natürlichen Organ zu messen. (me)

 

Schemazeichnung: Nervenzellen auf GraphenEin Netzwerk von Nervenzellen wächst auf Elektroden aus Graphen (Schemazeichnung). Bildquelle: © Forschungszentrum Jülich

Schemazeichnung: Nervenzellen auf GraphenEin Netzwerk von Nervenzellen wächst auf Elektroden aus Graphen (Schemazeichnung).