Sie sind hier: HomeRubrikenMesstechnik / Sensorik

News, Produkte, Fachartikel zu Embedded-Systemen: Echtzeitbetriebssysteme, Computer-Boards/Systeme, Erweiterungskarten, Entwicklungstools

Das kleinste Kräftemessen der Welt: Vibrationen im Nanometerbereich detektiert ein neuartiger Sensor

Wissenschaftler der TU Wien haben einen Sensor-Chip vpn weniger als einem Zehntelmillimeter entwickelt. Er soll vor allem Rasterkraftmikroskope verbessern; könnte aber auch Roboter mit hochsensiblem Fingerspitzengefühl ausstatten.

Mit dem Sensor-Chip lassen sich Kräfte und Längenänderungen hochpräzise messen. Bildquelle: © TU Wien

Mit dem Sensor-Chip lassen sich Kräfte und Längenänderungen hochpräzise messen.

Kräfte messen ist etwas ganz Alltägliches – jede handelsübliche Küchenwaage macht das. Kompliziert werden Kraftmessungen aber, wenn man auch die Richtung der Kraft messen möchte, wenn hochpräzise gemessen werden muss, und der Sensor auch noch auf Mikrometergröße verkleinert werden soll.

Messen in alle Richtungen

»Die meisten Kraft-Sensoren können Kräfte nur in einer Richtung messen«, sagt Alexander Dabsch, Dissertant im Team von Prof. Franz Keplinger am Institut für Sensor- und Aktuatorsysteme der TU Wien. Für viele Anwendungen reiche das aber nicht aus – zum Beispiel, wenn man in einem Rasterkraftmikroskop eine dünne Spitze Atom für Atom über eine raue Oberfläche gleiten lässt. Dann treten Kräfte in unterschiedliche Richtungen auf, aus denen man wertvolle Information gewinnen kann.

Daher entwickelte man an der TU Wien nun einen Kraft-Sensor, der deutlich mehr kann: Er misst nicht nur die Richtung der Kraft in allen drei Raumdimensionen, er kann auch noch Torsion – also räumliche Verdrehungen – präzise detektieren. Der Chip hat einen quadratischen Rahmen, der durch Krafteinwirkung von außen leicht verbogen werden kann. In der Mitte befindet sich eine kreuzförmige Struktur aus Siliziumdrähten, dünn wie Fliegenbeine.

Wenn man eine Gitarre stimmt, ändert man die Spannung der Saite und hört plötzlich einen anderen Ton – und genau dasselbe Prinzip nutzt der Sensor, um Krafteinwirkungen und Verbiegungen am Rahmen zu messen. Die Schwingungsfrequenzen der Silizium-Struktur ändern sich, wenn eine äußere Kraft den Sensor verbiegt. »Die Schwingungsfrequenz lässt sich auf wenige Hertz genau messen, das ermöglicht uns, die Verbiegungen am Chip mit einer Präzision im Nanometerbereich anzugeben«, erklärt Dabsch.

Prototyp erfolgreich fertiggestellt

Unterstützt wurde das Projekt von der Prize Prototypenförderung des Bundesministeriums für Wissenschaft, Forschung und Wirtschaft – einem Förderprogramm, das die Umsetzung von Ideen aus der akademischen Forschung in markttaugliche Prototypen ermöglicht. Der neuartige Kraft-Sensor wurde nun bereits mit Unterstützung des Forschungs- und Transfersupports der TU Wien zum Patent angemeldet, die Messmethode und erste Ergebnisse wurden im Fachjournal »Journal of Micromechanics and Microengineering« publiziert.

Die neue Messtechnik bietet vielfältige Anwendungsmethoden: »Nachdem unser Sensor extrem kompakt ist, liegt es nahe, über einen Einsatz in Rasterkraftmikroskopen nachzudenken«, so Dabsch. Aber es gibt  auch noch andere Möglichkeiten – »von der Überwachung mechanischer Verbiegungen in Bauwerken bis hin zur Präzisions-Robotik, etwa wenn eine Maschine mit besonders empfindlichen Objekten hantieren soll, auf die nur eine ganz bestimmte Maximalkraft ausgeübt werden darf.« (me)